Action sequencing is impaired in D1A-deficient mutant mice.
نویسندگان
چکیده
The role of dopamine in the production of behaviour is multifarious in that it can influence different aspects of movement (e.g. movement initiation, sensorimotor integration, and movement sequencing). A characteristic of the dopamine system which seems to be critical for the expression of this diverse influence is its varied receptor population. Previous studies have shown that specific receptor subtype activation leads to specific behavioural responses or alterations of selective aspects of movement. It is known that one of the important influences of dopamine includes sequential co-ordination of 'syntactic' patterns of grooming movements because moderate loss of the dopaminergic nigrostriatal projections specifically disrupts these patterns without affecting grooming actions in a general fashion (Berridge, K.C. Psychobiology, 15, 336, 1989). The specific receptors of the dopamine family which play a key part in this co-ordination of movement sequences is not known. In the present study, we examined the serial order of particular syntactic sequences or chains of grooming actions in mice lacking D1A receptors to explore the relationship between this receptor subtype and movement sequencing. Mutant mice had shorter grooming bouts and a disruption of the organization of sequential patterns compared with wild-type littermate controls. Sequential disruption was reflected in the failure of D1A mutants to follow the syntactic pattern of grooming to completion. This sequential disruption deficit appeared to be specific, as mutant mice initiated more syntactic chains than wild-type controls even though they were less likely to complete them. These results support the hypothesis that D1A receptor activation plays a part in the sequencing of natural action. This conclusion has important implications for the understanding of the functional heterogeneity of dopamine receptor subtypes and of the aetiology of symptoms observed in patients with basal ganglia disease.
منابع مشابه
Modulatory actions of dopamine on NMDA receptor-mediated responses are reduced in D1A-deficient mutant mice.
The role of D1 dopamine (DA) receptors in mediating the ability of DA to modulate responses attributable to activation of NMDA receptors was examined in mice lacking D1A dopamine receptors. Specifically, experiments were designed to test the hypothesis that the ability of DA to potentiate responses mediated by activation of NMDA receptors was attributable to activation of D1 receptors. Based on...
متن کاملD1-like dopaminergic activation of phosphoinositide hydrolysis is independent of D1A dopamine receptors: evidence from D1A knockout mice.
Accumulated evidence suggests that dopamine and dopamine D1 agonists can activate phospholipase C in both brain and peripheral tissue. The receptor that mediates the hydrolysis of phosphoinositides has not been identified. The cloned dopamine D1A receptor that is generally thought to be linked to adenylyl cyclase, has also been proposed to couple to phospholipase C. However, a number of studies...
متن کاملRole of the D1A dopamine receptor in the pathogenesis of genetic hypertension.
Since dopamine produced by the kidney is an intrarenal regulator of sodium transport, an abnormality of the dopaminergic system may be important in the pathogenesis of hypertension. In the spontaneously hypertensive rat (SHR), in spite of normal renal production of dopamine and receptor density, there is defective transduction of the D1 receptor signal in renal proximal tubules, resulting in de...
متن کاملO-10: Formation and Molecular Composition of The Sperm Head to Tail Coupling Apparatus
Background According to a worldwide survey in 2010 infertility affects 48.5 million of couples. In roughly half of the cases infertility is provoked by the male mate. Thus, a significant percentage of young men are infertile but the underlying causes are mostly unknown. Male fertility and reproduction success critically depends on proper formation of the mature sperm. Transmission of the geneti...
متن کاملImpaired perception of gravity leads to altered head direction signals: what can we learn from vestibular-deficient mice?
Many mutant mouse strains display pathological behaviors, such as head tilts, head bobbing, or circling and waltzing, strongly suggesting that their vestibular system is impaired. Recently, Yoder and Taube studied head direction signals in tilted mutant mice, which have an impaired gravitation sensitivity in the vestibular periphery. Here we summarize their findings and discuss a caveat related...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The European journal of neuroscience
دوره 10 7 شماره
صفحات -
تاریخ انتشار 1998